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Lecture 09:  Basic Type Classes Concluded
o Functor Review
o Creating our own data types and making them part of the Haskell 

ecosystem: instance declarations
o Class declarations
o Derived instances of classes

Reading:  Hutton 8.1 – 8.5 

Additional Reading:  Build You a Haskell for Great Good, Ch. 8 
“Typeclasses 102”



So far all our type classes have been with basic (non-function) data.

How do we take advantage of the full power of functional programming, that is, 
how we do make all this higher-order?    

Let’s examine the Functor type class, which provides for map-like functions. 
Recall that map has the type

map :: (a -> b) -> [a] -> [b]

We would like to provide this kind of functionality for arbitrary data types, not 
just lists.  For example, we’d like to map over Maybe or trees or ....

Review:  Functors



How to do a version of map which works on Maybe?

For example, over a Maybe it would have to be

fmap :: (a -> b) -> Maybe a -> Maybe b

(you'll see why we changed the name in a minute). This would allow us to apply a 
function inside a Maybe: 

Main> fmap (*2) (Just 5)
Just 10
Main> fmap (*2) Nothing
Nothing
Main> fmap length (Just ”Hi there!“)
Just 9
Main> fmap (++ " Folks!") (Just "Hi There")
Just "Hi There Folks!"
Main> fmap (++ " Folks!") Nothing
Nothing

Type Classes:  Functors



This is the purpose of the Functor type class, which is defined as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

This is an example of a type class which doesn’t provide any implementation, just 
requires that any instance must provide an implementation of fmap.

What is f in this declaration?  It looks like a function, since it is applied to 
arguments a and b.  In fact, it is, but we call it a type constructor, since it
takes a type (such as Integer) and constructs a type based on it:

data Maybe a = Nothing | Just a

getPositive :: Integer -> Maybe Integer
getPositive n | n >= 0    = Just n

| otherwise = Nothing

Maybe Integer  =>  Nothing | Just Integer

Type Classes:  Functors



class Functor f where
fmap :: (a -> b) -> f a -> f b

To create a map on Maybe types, we do this:

instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
fmap g (Just x) = Just (g x)
fmap g Nothing = Nothing

Notice carefully that we did not say

instance Functor (Maybe a) where

Functor wants a type constructor, not a type!  By referential transparency,
you can't substitute (Maybe a) for f, but you can substitute Maybe:

(Maybe a) a (Maybe a) b Maybe a   Maybe b

Type Classes:  Functors



class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing 

Main> fmap (*8) [2,3,4,4]
[16,24,32,32]

Main> fmap (*8) (Just 3)
Just 24

Why do this?  Now we can use the fmap function, and also, any other function which uses 
fmap can deal with our data type (we will see how this works with Monads). 

Your data type has joined the Haskell "ecosystem" and can use all of its many features!

Type Classes:  Functors



We can create an fmap for any data type we create, by simply providing the 
appropriate implementation of fmap when we make our data type an instance of 
the Functor type class:

data Tree a = Null | Node (Tree a) a (Tree a)

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b 
fmap g Null = Null
fmap g (Node left x right)

= Node (fmap g left) (g x) (fmap g right)

Main> fmap (*2) Null
Null
Main> (foldr insert Null [5,7,3,12])
Node (Node Null 3 Null) 5 (Node Null 7 (Node Null 12 Null))

Main> fmap (*2) (foldr treeInsert Null [5,7,3,2,1,7])
Node (Node Null 6 Null) 10 (Node Null 14 (Node Null 24 Null))

Type Classes:  Functors



Type Classes: Creating Types
But you can make your data type an instance of any type class, not just Functor, as long 
as you use an instance declaration which provides implementations for all the class's 
functions:

For example, if we define a Tree as before, we can't apply == to its instances:

data Tree a = Null | Node (Tree a) a (Tree a)

Main> Null == Null

<interactive>:16:1: error:
• No instance for (Eq (Tree a0)) arising from a use of ‘==’
• In the expression: Null == Null
In an equation for ‘it’: it = Null == Null

In fact, we can't even look at the data instances because it is not an instance of Show!

Main> Null

<interactive>:13:1: error:
• No instance for (Show (Tree a0)) arising from a use of ‘print’
• In a stmt of an interactive GHCi command: print it

Reading: Hutton Ch. 8.5



This is because Tree is not an instance of the standard classes -- it can use its own 
functions, but it can't use their functions! It's a Bare Bones Tree!

* -> * (functions)Eq
Ord

==   /=
<  >  <=  =>  max min

Enum

toEnum  fromEnum  [n .. m]
Bool

True False
&&  ||  not   

[]
:  head 
tail

(,)
fst snd

(,,) ...

Num

Integral

Integer Int

+  *  - negate abs signum

div mod rem  

Fractional

Double

/  recip

Type Classes: Creating Types
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show
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Instance Declarations
So we declare Tree to be an instance of Eq and define == on it:

Main> Null == Null
True

Main> (Node Null 3 Null) == (Node Null 3 Null)
True

Main> (Node Null 3 Null) == (Node Null 5 Null)
False

Main> Null <= Null       But still can't use functions in other classes such as Ord. 

<interactive>:24:1: error:
• No instance for (Ord (Tree a0)) arising from a use of ‘<=’
.....

Reading: Hutton Ch. 8.5



Now Tree is a member of the Eq class and can be manipulated by any functions that use 
== and /= : 

* -> * (functions)Eq
Ord

==   /=
<  >  <=  =>  max min

Enum

toEnum  fromEnum  [n .. m]
Bool

True False
&&  ||  not   

[]
:  head 
tail

(,)
fst snd

(,,) ...

Num

Integral

Integer Int

+  *  - negate abs signum

div mod rem  

Fractional

Double

/  recip
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Instance Declarations

Also, now you get other functions....     note that Eq defined /= from == so Tree can 
inherit the function /= from Eq:

Main> (Node Null 3 Null) /= (Node Null 5 Null)
True

And, we can use any function that only depends on == : 

Main> Null `elem` [ (Node Null 3 Null),  Null ]
True

Main> filter (/= Null) [(Node Null 3 Null),Null,(Node Null 2 Null)]
[( () 3 () ),( () 2 () )]

This is the whole point of making your data types instances of standard classes: You can 
make your data type part of the whole Haskell ecosystem and use all its features.

Otherwise, you're basically stuck with Bare Bones Haskell!

Reading: Hutton Ch. 8.5



Instance Declarations
Now let's fix the problem that we can't look at the trees, by making Tree an instance of 
the Show class; since show just turns trees into Strings, we can choose any way we want of 
printing out the trees:

Main> Null
()

Main> (Node Null 2 Null)
( () 2 () )

Main> Node (Node Null 2 Null) 5 (Node Null 9 Null)
( ( () 2 () ) 5 ( () 9 () ) )

Reading: Hutton Ch. 8.5

Note that there is a bit of 
recursion going on here: the 
base type of the Tree must also 
be an instance of Show.

Recursive call to this show.Call to show on type a.



Class Declarations
We've seen that we can make a data type an instance of an existing class, so that we
can use its functions and participate in its part of the Haskell ecosystem. But can we 
make our own classes?   Well, of course.....

A new type class can be declared using Haskell’s class declaration; in fact, if you check 
out the Prelude (Hutton, Appendix B), you will see declarations of the standard classes 
discussed last time, starting with:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

Note: The class declaration specifies:
o The names and types of all the functions which define the class; and
o The implementation of some number (perhaps all perhaps none) of these functions.
Instances will 
o Inherit the function types and implementations;
o Must provide implementations for any functions not implemented in the class def; and
o May override any implementations – But may not override the types!

This material is taken
directly from Hutton Ch. 8.5



Class Declarations
Classes can also be extended. For example, Ord is declared in the Prelude to extend Eq:

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
min, max             :: a -> a -> a

min x y | x <= y     = x
| otherwise  = y

max x y | x <= y     = y
| otherwise  = x

For a type to be an instance of Ord it must be also be an instance of Eq and also give 
implementations of the 6 operators shown above; but since default definitions for 2 of them 
are already given , you only need to give the missing 4:

instance Ord Bool where
False < True = True
_     < _    = False

b <= c = (b < c) || (b == c)
b > c  = c < b
b >= c = c <= b

Reading: Hutton Ch. 8.5



Derived Instances
Is there any way to avoid all this work when you create a data type? Can't Haskell help out?  

Well, yes, the deriving mechanism allows you to do this in a simple way as long as you
are willing to live with the default implementations that Haskell provides. 

Main> Null
Null

Main> (Node Null 2 Null)
Node Null 2 Null

Main> Null == Null
True

Main> (Node Null 4 Null) == (Node Null 4 Null)
True

Main> Null `elem` [ (Node Null 3 Null), Null ]
True

Main> filter (/= Null) [ (Node Null 3 Null), Null, (Node Null 2 Null) ]
[Node Null 3 Null,Node Null 2 Null]

Reading: Hutton Ch. 8.5

Compare with our home-
brewed version of show:



Derived Instances
This is pretty standard for ordinary data types, because the default implementations are fine; so the Bool
data type is actually defined like this:

data Bool = False | True  deriving (Eq, Ord, Show, Read)

Note: When you use deriving, any component types used in your data declaration must already have 
these types:

*Main> Null
Null
*Main> (Node Null M Null)

<interactive>:57:1: error:
• No instance for (Show Weekday) arising from a use of ‘print’

.....
*Main> Null == Null
True
*Main> (Node Null M Null) == (Node Null M Null)

<interactive>:59:1: error:
• No instance for (Eq Weekday) arising from a use of ‘==’
....

Reading: Hutton Ch. 8.5

Weekday is not an instance of Eq
or Show!



Derived Instances
But this is, of course, easy to fix if you're fine with the default implementations:

Main> (Node Null M Null)
Node Null M Null
Main> (Node Null M Null) == (Node Null M Null)
True

Or you may want to implement only some of the classes:

Main> (Node Null M Null)
Node Null Monday Null

Reading: Hutton Ch. 8.5

Just remember the rule:

If you make a parameterized data type an 
instance of a class, then all the types used by 
the data type must be instances of the class.  
Recursion!



Derived Instances
The class Read is an interesting case, because the default implementation just expects the 
same syntax as the default Show would display:

Main> read "Null" :: Tree Integer
Null

Main> read "Node Null 4 Null" :: Tree Integer
Node Null 4 Null

Main> read "M"
*** Exception: Prelude.read: no parse

Main> read "M" :: Weekday
M

Reading: Hutton Ch. 8.5

Even though Weekday is not a 
polymorphic data type, read
still can not figure out the type, 
so it must be supplied!



Derived Instances
But of course I can still define my own Show for Weekday:

Main> read "M" :: Weekday
Monday

Reading: Hutton Ch. 8.5



Parsing (Lab 04)

Digression:  What if we want to define a Read that reads our own Tree
representation, perhaps the same as our own Show implementation?

This is difficult, because reading a String character by character to reconstruct 
a type (possibly recursive) is not a simple process.  For example, it needs to match 
parentheses in our String representation of Trees from before:

( ( () 2 () ) 5 ( () 9 () ) )

This is called parsing, which I hear you know something about after today's lab. 
We'll be spending more time on parsing when we start to implement languages 
after Spring Break....

Reading: Hutton Ch. 8.5


